Шар, сфера и их части
Введем следующие определения, относящиеся к шару, сфере и их частям.
Определение 1. Сферой с центром в точке O и радиусом r называется множество точек, расстояние до точки O которых равно r (рис. 1).
Определение 2. Сферой с центром в точке O и радиусом r называется множество точек, расстояние от которых до точки O не превышает r (рис. 1).
Рисунок 1
Таким образом, сфера с центром в точке O и радиусом r является поверхностью сферы с центром в точке O и радиусом r.
Примечание: Радиус сферы (радиус сферы) — это отрезок, соединяющий любую точку на сфере с центром сферы. Длину этого отрезка также часто называют радиусом сферы (радиусом сферы).
Определение 3. Сферический пояс (сферический пояс) – это часть сферы, заключенная между двумя параллельными плоскостями параллельных плоскостей (рис. 2).
Определение 4. Сферический слой – это часть сферы, заключенная между двумя параллельными плоскостями параллельных плоскостей (рис. 2).
Рис.2
Окружности, ограничивающие сферический пояс, называются основаниями сферического пояса.
Расстояние между плоскостями Расстояние между плоскостями оснований сферического пояса называется высотой сферического пояса.
Из определений 3 и 4 следует, что сферический слой ограничен сферическим поясом и двумя окружностями, плоскости которых параллельны и параллельны друг другу. Эти окружности называются основаниями сферического слоя.
Высота сферического слоя — это расстояние между плоскостями, расстояние между плоскостями оснований сферического слоя.
Определение 5. Сферическим сегментом называется каждая из двух частей, на которые шар делится секущей его плоскостью (рис. 3).
Определение 6. Каждая из двух частей, на которые шар делится секущей его плоскостью, называется сферическим сегментом (рис. 3).
Рис.3
Из определений 3 и 5 следует, что сферический сегмент представляет собой сферический пояс, в котором одна из плоскостей основания касается сферы (рис. 4). Высота такого сферического пояса называется высотой сферического сегмента.
Соответственно сферический сегмент представляет собой сферический слой, в котором одна из плоскостей оснований касается шара (рис. 4). Высота такого сферического слоя называется высотой сферического сегмента.
Рис.4
По той же причине всю сферу можно рассматривать как сферический пояс, где обе плоскости заземления соприкасаются со сферой (рис. 5). Следовательно, весь шар представляет собой сферический слой, где обе плоскости основания касаются шара (рис. 5).
Рис.5
Определение 7. Сферическим сектором называется фигура, состоящая из всех отрезков, соединяющих точки сферического отрезка с центром сферы (рис. 6).
Рис. 6
Высота сферического сектора равна высоте его сферического сегмента .
Комментарий. Сферический сектор состоит из сферического сегмента и конуса с общим основанием. Вершина конуса является центром сферы.
Читайте также: Цилиндр: понятие, признаки и свойства
Площади сферы и ее частей. Объемы шара и его частей
В следующей таблице приведены формулы для расчета объема сферы и объемов ее частей, а также площади сферы и площадей ее частей.
Фигура | Рисунок | Формула | Описание |
Прохладный | S = 4πr2,
где |
Диапазон пуль | |
Мяч | где r — радиус шара. |
Объем мяча | |
Сферический ремень | S = 2пр,
где Площадь сферического пояса не зависит от радиусов r1 и r2 ! |
Площадь сферического пояса | |
Мяч команда | где r1, r2 — радиусы оснований сферического слоя, h – высота сферического слоя. |
Объем сферического слоя | |
Сферический сегмент | S = 2пр,
где |
Площадь сферического сегмента | |
Шаровой сегмент | где r — радиус шара, h – высота сферического сегмента. |
Объем сферического сегмента | |
Сектор мяча | где r — радиус шара, h — высота сферического сектора. |
Объем сферического сектора |
Прохладный |
Диапазон мяча: S = 4πr2, где |
Мяч |
Объем мяча: где |
Сферический ремень |
Площадь сферического пояса: S = 2пр, где Площадь сферического пояса не зависит от радиусов r1 и r2 ! |
Мяч команда |
Объем шаровой кровати: где |
Сферический сегмент |
Площадь сферического сегмента: S = 2пр, где |
Шаровой сегмент |
Объем шарового сегмента: где |
Сектор мяча |
Объем сектора сферы: где |
Шаровой слой
Сферический слой — это часть сферы, заключенная между двумя параллельными секущими плоскостями.
Площадь криволинейной поверхности (исключая площадь поперечного сечения):
Криволинейная поверхность =2pi R h
Площадь поверхности (включая площадь поперечного сечения):
Площадь поверхности =2pi Rh + pi r_1^2 + pi r_2^2 = pi(2Rh + r_1^2 + r_2^2)
Объем:
Объем = frac{1}{6}pi h(3r_1^2+3r_2^2+h^2)
Определение шарового слоя
Сферический слой (или разрез шара) — это часть шара, которая остается между двумя пересекающими его параллельными плоскостями. Изображение ниже окрашено в желтый цвет.
- R — радиус шара;
- r1 — радиус первой режущей базы;
- r2 — радиус второй режущей базы;
- h — высота сферического слоя; перпендикулярно из центра первого основания к центру второго.
Формула для нахождения объема шарового слоя
Чтобы найти объем сферического слоя (диска сферы), нужно знать высоту, а также радиусы двух оснований.
Эту же формулу можно представить в несколько ином виде:
Примечания:
- если вместо радиусов оснований (r1 и r2) известны их диаметры (d1 и d2), то последние необходимо разделить на 2, чтобы получить соответствующие радиусы.
- число π обычно округляют до 3,14.
Пример задачи
Найдите объем сферического слоя, если радиусы оснований 3,4 см и 5,2 см, а высота 2 см.
Решение
Все, что нам нужно сделать в этом случае, это подставить известные значения в одну из формул выше (в качестве примера выберем вторую):